

Multigrid Tutorial

Van Emden Henson

Center for Applied Scientific Computing Lawrence Livermore National Laboratory

vhenson@llnl.gov

http://www.casc.gov/CASC/people/henson

April 10, 1999

AMG: What is Algebraic Multigrid??

- Any multilevel method where geometry is not used (and may not be available) to build coarse grids, interpolation and restriction, or coarse-grid operators.
- "Classical" AMG was introduced by Brandt, McCormick and Ruge in 1982. It was explored early on by Stueben in 1983, and popularized by Ruge and Stuben in 1987.
- This tutorial will describe only the classical AMG algorithm.

AMG: What is Algebraic Multigrid??

- Many other algorithms qualify under the definition given. Some whose approaches are closely related to "classical AMG":
 - Chang
 - · Griebel, Neunhoeffer, Regler
 - Huang
 - Krechel, Stueben
 - Zaslavsky
- Work close to the original, but using different approaches to coarsening or interpolation:
 - Fuhrmann
 - Kickinger

AMG: What is Algebraic Multigrid??

- Other approaches that are important, novel, historical, or weird:
- Multigraph methods (Bank & Smith)
- Aggregation methods (Braess; Chan & Zikatanov & Xu)
- Smoothed Aggregation methods (Mandel & Brezina & Vanek)
- Black Box Multigrid (Dendy, Dendy & Bandy)
- Algebraic Multilevel Recursive Solver (Saad)
- Element based algebraic multigrid (Chartier; Cleary et al)
- MultiCoarse correction with Suboptimal Operators (Sokol)
- Multilevel block ILU methods (Jang & Saad; Bank & Smith & Wagner; Reusken)
- AMG based on Element Agglomeration (Jones & Vassilevski)
- Sparse Approximate Inverse Smoothers (Tang & Wan)
- Algebraic Schur-Complement approaches (Axelsson & Vassilevski & Neytcheva)

Highlights of Multigrid: The 1-d Model Problem

- Poisson's equation: $-\Delta u = f$ in [0,1], with boundary conditions u(0) = u(1) = 0.
- Discretized as:

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i \qquad u_0 = u_N = 0$$

• Leads to the Matrix equation Au = f, where

$$A = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}, \quad u = \begin{pmatrix} u_{1} & & \\ u_{2} & & \\ u_{3} & & \\ u_{N-2} & & \\ u_{N-1} & & \end{pmatrix}, \quad f = \begin{pmatrix} f_{1} & & \\ f_{2} & & \\ f_{3} & & \\ f_{N-2} & & \\ f_{N-1} & & \end{pmatrix}$$

Highlights of Multigrid: Weighted Jacobi Relaxation

Consider the iteration:

$$u_i^{(new)} \leftarrow (1-\omega) u_i^{(old)} + \frac{\omega}{2h^2} (u_{i-1}^{(old)} + u_{i+1}^{(old)} + f_i)$$

• Letting A = D + L + U, the matrix form is:

$$u^{(new)} = \left[(1 - \omega)I - \omega D^{-1}(L + U) \right] u^{(old)} + \omega D^{-1} f$$
$$= G_{\omega} u^{(old)} + \omega D^{-1} f$$

• It is easy to see that if $e \equiv u^{(exact)} - u^{(approx)}$, then

$$e^{(new)} = G_{\omega}e^{(old)}$$

Highlights of Multigrid: Relaxation Typically Stalls

• The eigenvectors of G_{ω} are the same as those of A, and are Fourier Modes: $v_i = \sin(ik\pi/N)$, $k = 1, 2, \dots, N-1$

• The eigenvalues of G_{ω} are $1 - 2\omega \sin^2(k\pi/2N)$, so the effect of relaxation on the modes is:

Note: No value of () will damp out the low frequency waves

Highlights of Multigrid: Relaxation Smooths the Error

Initial error,

Error after several iteration sweeps:

Many relaxation
schemes
have the smoothing
property, where
oscillatory
modes of the error
are
eliminated
effectively, but
smooth modes are
damped
very slowly.

Highlights of Multigrid: Smooth error can be represented on a coarse grid

A smooth function:

 Can be represented by linear interpolation from a coarser grid:

On the coarse grid, the smooth error appears to be relatively higher in frequency: in the example it is the 4-mode, out of a possible 16, on the fine grid, 1/4 the way up the spectrum. On the coarse grid, it is the 4-mode out of a possible 8, hence it is 1/2 the way up the spectrum.

Relaxation will be more effective on this mode if done on the coarser grid!!

Highlights of Multigrid: Coarse-grid Correction

- Perform relaxation on $A^h u^h = f^h$ on fine grid until error is smooth.
- Compute residual, $r^h = f^h A^h \iota h$ and transfer to the coarse grid $r^{2h} = I_h^{2h} r^h$.
- Solve the coarse-grid residual equation to obtain the error: $A^{2h}e^{2h} = r^{2h}$, $\therefore e^{2h} = (A^{2h})^{-1}r^{2h}$
- Interpolate the error to the fine grid and correct the fine-grid solution: $u^h \leftarrow u^h + I_{2h}^h e^{2h}$

Highlights of Multigrid: Coarse-grid Correction

Highlights of Multigrid: **Tools Needed**

Interpolation and restriction operators:

$$I_{2h}^{h} = \begin{pmatrix} 0.5 \\ 1.0 \\ 0.5 & 0.5 \\ 1.0 \\ 0.5 & 0.5 \\ 1.0 \\ 0.5 \end{pmatrix}, \qquad I_{h}^{2h} = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 1 & 0 \\ & & 0 & 1 & 0 \\ & & & 0 & 1 & 0 \end{pmatrix}, \qquad I_{h}^{2h} = \begin{pmatrix} 0.25 & 1.0 & 0.25 \\ & & 0.25 & 1.0 & 0.25 \\ & & & 0.25 & 1.0 & 0.25 \end{pmatrix}$$
Linear Injection Full-weighting

Linear Injection

Full-weighting

Interpolation

- Coarse-grid Operator A^{2h} . Two methods:
 - (1) Discretize equation at larger spacing
 - (2) Use Galerkin Formula:

$$A^{2h} = I_h^{2h} A^h I_{2h}^h$$

Highlights of Multigrid:

Recursion: the $(\vee, 0)$ V-cycle

 Major question: How do we "solve" the coarse-grid residual equation? Answer: recursion!

$$u^{h} \leftarrow G^{\vee}(A^{h}, f^{h})$$

$$f^{2h} \leftarrow I_{h}^{2h}(f^{h} - A^{h}u^{h})$$

$$u^{2h} \leftarrow G^{\vee}(A^{2h}, f^{2h})$$

$$f^{4h} \leftarrow I_{2h}^{4h}(f^{2h} - A^{2h}u^{2h})$$

$$u^{4h} \leftarrow G^{\vee}(A^{4h}, f^{4h})$$

$$u^{4h} \leftarrow G^{\vee}(A^{4h}, f^{4h})$$

$$u^{8h} \leftarrow G^{\vee}(A^{8h}, f^{8h})$$

$$u^{8h} \leftarrow G^{\vee}(A^{8h}, f^{8h})$$

$$u^{8h} \leftarrow u^{8h} \leftarrow u^{8h} + e^{8h}$$

$$u^{8h} \leftarrow u^{8h} \leftarrow u^{8h} + e^{8h}$$

$$u^{8h} \leftarrow u^{8h} \leftarrow u^{8h} + e^{8h}$$

Algebraic multigrid: for unstructured-grids

- Automatically defines coarse "grid"
- AMG has two distinct phases:
 - setup phase: define MG components
 - solution phase: perform MG cycles
- AMG approach is opposite of geometric MG
 - fix relaxation (point Gauss-Seidel)
 - choose coarse "grids" and prolongation, P, so that error not reduced by relaxation is in range(P)
 - define other MG components so that coarse-grid correction eliminates error in range(P) (i.e., use Galerkin principle)

(in contrast, geometric MG fixes coarse grids, then defines suitable operators and smoothers)

AMG has two phases:

- Setup Phase
 - Select Coarse "grids," Ω^{m+1} , $m=1,2,\ldots$
 - Define interpolation, I_{m+1}^m , m = 1, 2, ...
 - Define restriction and coarse-grid operators

$$I_m^{m+1} = (I_{m+1}^m)^T$$
 $A^{m+1} = I_m^{m+1} A^m I_{m+1}^m$

- Solve Phase
 - Standard multigrid operations, e.g., V-cycle, W-cycle, FMG, etc

In AMG, we choose relaxation first:

Typically, pointwise Gauss-Seidel is used

$$A = (D + L + U)$$

The iteration is developed:

$$Ax = b$$

$$(D+L)x = b - Ux$$

$$x^{new} = (D+L)^{-1}b - (D+L)^{-1}Ux^{old}$$

• Add and subtract $(D+L)^{-1}(D+L) x^{old}$ to get:

$$x^{new} = x^{old} + (D+L)^{-1} r^{old}$$

Gauss-Seidel relaxation error propagation:

The iteration is:

$$x^{new} = x^{old} + (D+L)^{-1} r^{old}$$

Subtracting both sides from the exact solution:

$$x^{exact} - x^{new} = x^{exact} - (x^{old} + (D+L)^{-1} r^{old})$$
$$e^{new} = e^{old} - (D+L)^{-1} r^{old}$$

• Using r = A e this can be written as:

$$e^{new} = \left[I - (D+L)^{-1}A\right]e^{old}$$

An observation: error that is slow to converge \Rightarrow "small" residuals

Consider the iterative method error recurrence

$$e^{k+1} = (I - Q^{-1}A) e^k$$

Error that is slow to converge satisfies

$$(I-Q^{-1}A) e \approx e \implies Q^{-1}A e \approx 0$$

 $\Rightarrow r \approx 0$

Perhaps a better viewpoint is

$$(I-Q^{-1}A) e \approx e \implies \langle Q^{-1}A e, Ae \rangle \ll \langle e, Ae \rangle$$

Some implications of slow convergence

- For most iterations (e.g., Jacobi or Gauss-Seidel) this last holds if $\langle D^{-1}Ae, Ae \rangle \ll \langle e, Ae \rangle$. (1)
- Hence $\sum_{i=1}^{N} \frac{r_i^2}{a_{ii}} \ll \sum_{i=1}^{N} r_i e_i$ implying that, on average,

$$|r_i| \ll a_{ii} |e_i|$$

• An implication is that, if e is an error slow to converge, then locally at least, e_i can be well-approximated by an average of its neighbors:

In Multigrid, error that is slow to converge is geometrically smooth

 Combining the algebraic property that slow convergence implies "small residuals" with the observation above, in AMG we DEFINE smooth error:

 Smooth error is that error which is slow to converge under relaxation, that is,

$$(I-Q^{-1}A) e \approx e$$
or, more precisely,
$$\|(I-Q^{-1}A) e\|_{A} \approx \|e\|_{A}$$

But sometimes, smooth error isn't! (example from Klaus Stueben)

Consider the problem

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

on the unit square, using a regular Cartesian grid,
 with finite difference stencils and values for

a, b, and c:

a=1	A=1
b=1000	b=1
c=0	c=2
a=1	a=1000
b=1	b=1
c=0	c=0

$$u_{xx} = h^{-2} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$$

$$u_{yy} = \frac{1}{h^2} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$u_{xy} = \frac{1}{2h^2} \begin{bmatrix} -1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 \end{bmatrix}$$

But sometimes, smooth error isn't!

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

 Using a zero right-hand side and a random initial guess, after 8 sweeps of Gauss-Seidel iteration the error is unchanging in norm. By our definition, the error is smooth. And it looks like this:

Smooth error for

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

AMG uses dependence (influence) to determine MG components

- We need to choose a subset of the gridpoints (coarse grid) that can be used 1) to represent smooth errors, and 2) to interpolate these errors to the fine grid.
- Intuitively, a point u_j is a good candidate for a C-point if its value is important in determining the value of another point, u_i in the ith equation.
- If the a_{ij} coefficient is "large" compared to the other off-diagonal coefficients in the ith equation then u_j influences u_i (or u_i depends on u_j).

Dependence and smooth error

For M-matrices, we define "i depends on j " by

$$-a_{ij} \ge \theta \max_{k \ne i} \{-a_{ik}\}, \quad 0 < \theta \le 1$$

alternatively, " j influences i. "

• It is easy to show from (1) that smooth error satisfies $\langle Ae, e \rangle \ll \langle De, e \rangle$ (2)

Dependence and smooth error

For M-matrices, we have from (2)

$$\frac{1}{2} \sum_{i \neq j} \left(\frac{-a_{ij}}{2a_{ii}} \right) \left(\frac{e_i - e_j}{e_i} \right)^2 \ll 1$$

- If e_i does not depend on e_j then the inequality may be satisfied because a_{ij} is "small".
- If e_i does depend on e_j , then a_{ij} need not be small, and the inequality must be satisfied by
- This implies that smooth error varies slowly in the direction of dependence.

Some useful definitions

• The set of dependencies of a variable u_i , that is, the variables upon whose values the value of u_i depends, is defined as

$$S_i = \left\{ j : -a_{ij} > \max_{k \neq i} \left\{ -a_{ik} \right\} \right\}$$

• The set of points that u_i influences is denoted:

$$S_i^T \equiv \{j : i \in S_j \}$$

More useful definitions

- The set of coarse-grid variables is denoted C.
- The set of fine-grid variables is denoted F.
- The set of coarse-grid variables used to interpolate the value of the fine-grid variable u_i , called the coarse interpolatory set for i, is denoted C_i .

Two Criteria for Choosing the Coarse Grid Points

- First Criterion: F F dependence
 - (C1) For each $i \in F$, each point $j \in S_i$ should either be in C itself or should depend on at least one point in C_i .

Since the value of u_i depends on the value of u_j , the value of u_j must be represented on the coarsegrid for good interpolation. If j isn't a C-point, it should depend on a point in C_i so its value is "represented" in the interpolation.

Two Criteria for Choosing the Coarse Grid Points

- Second Criterion: Maximal Subset
 - (C2) C should be a maximal subset with the property that no C-point depends on another.
 - (C1) tends to increase the number of C-points. In general, the more C-points on Ω^H the better the h-level convergence.
 - But more C-points means more work for relaxation and interpolation.
 - (C2) is designed to limit the size (and work) of the coarse grid.

Two Criteria for Choosing the Coarse Grid Points

- It is sometimes not possible to satisfy both criteria simultaneously (an example will be seen shortly).
- In those cases, we choose to satisfy (C1), the requirement that F-F dependencies be represented in the coarse-interpolatory set, while using (C2) as a guide.
- This choice leads to somewhat larger coarse grids, but tends to preserve good convergence properties.

Choosing the Coarse Grid Points

- Assign to each gridpoint k a "value" equal to the number of points that depend on k.
- Choose the first point with global maximum value as a C-point.
- The new C-point can be used to interpolate values of points it influences. Assign them all as Fpoints.
- Other points influencing these new F-points can be used in their interpolation. Increment their value.
- Repeat until all points are C- or F-points.

Ruge AMG: start

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 1

- ⇒ select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F-pt 1

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: update F-pt neighbors 1

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 2

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F-pt 2

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: update F-pt neighbors 2

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 3

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 4

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 5

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 6,7,8,9

Examples: Laplacian Operator

5-pt FD, 9-pt FE (quads), and 9-pt FE (stretched quads)

5-pt FD

$$\begin{pmatrix} -1 \\ -1 & 4 & -1 \\ -1 & -1 \end{pmatrix}$$

9-pt FE (quads)

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of new F-pt neighbors

Modulo periodicity, it's the same coarsening as in the Dirichlet case.

 However, it has many F-F connections that do not share a common C-point

→ A second pass is made in which some F-points are made into C-points to enforce (C1).

→ Goals of the second pass include minimizing C-C connections, and minimizing the number of C-points converted to F-points.

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

a=1	A=1
b=1000	b=1
c=0	c=2
a=1	a=1000
b=1	b=1
c=0	c=0

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

Prolongation

$$(Pe)_{i} = \begin{cases} e_{i} &, i \in C \\ \sum_{k \in C_{i}} \omega_{ik} e_{k} &, i \in F \end{cases}$$

The interpolated value at point i is just e_i if i is a C-point. If i is an F-point, the value is a weighted sum of the values of the points in the coarse interpolatory set C_i .

To define prolongation at i, we must examine the types of connections of u_i .

Sets of connection types:

 C_i is dependent on these coarse interpolatory C-points.

 D_i^s — *i* is dependent on these F-points.

i does not depend on these "weakly connected" points, which may be C- or F-points.

CASC

Prolongation is based on smooth error and dependencies (from M-matrices)

Recall that smooth error is characterized by "small" residuals:

$$r_i = a_{ii} e_i + \sum_{j \in N_i} a_{ij} e_j \approx 0$$

which we can rewrite as:

$$a_{ii}e_i \approx -\sum_{j\neq i} a_{ij}e_j$$

We base prolongation on this formula by "solving" for e_i and making some approximating substitutions.

Prolongation is based on smooth error and dependencies (from M-matrices)

We begin by writing the smooth-error relation:

$$a_{ii}e_i \approx -\sum_{j\neq i} a_{ij}e_j$$

Identifying its component sums:

$$a_{ii}e_i \approx -\sum_{j \in C_i} a_{ij}e_j - \sum_{j \in D_i^S} a_{ij}e_j - \sum_{j \in D_i^W} a_{ij}e_j$$

$$Coarse_{interpolatory}$$

$$set$$

$$F-point_{dependencies}$$

$$connections$$

We must approximate e_j in each of the last two sums in terms of e_i^j or of e_j for $j \in C_i$.

For the weak connections: let $e_i \approx e_i$.

$$a_{ii}e_{i} \approx -\sum_{j \in C_{i}} a_{ij}e_{j} - \sum_{j \in D_{i}^{s}} a_{ij}e_{j} - \sum_{j \in D_{i}^{w}} a_{ij}e_{j}$$

Coarse
interpolatory
set

F-point
dependencies
connections

Effectively, this throws the weak connections onto the diagonal:

$$\left(a_{ii} + \sum_{j \in D_i^w} a_{ij}\right) e_i \approx -\sum_{j \in C_i} a_{ij} e_j - \sum_{j \in D_i^s} a_{ij} e_j$$

This approximation can't hurt too much:

- Since the connection is weak.
- If *i* depended on points in $D_{i'}^{w}$ smooth error varies slowly in the direction of dependence

For the F-point dependencies: use a weighted avg. of errors in $C_i \cap C_j$.

Approximate e_j by a weighted average of the e_k in the coarse interpolatory set $C_i \cap C_j$.

$$e_{j} \approx \frac{\left(\sum_{k \in C_{i}} a_{jk} e_{k}\right)}{\left(\sum_{k \in C_{i}} a_{jk}\right)}$$

It is for this reason that the intersection of the coarse interpolatory sets of two F-points with a dependence relationship must be nonempty (C1).

Finally, the prolongation weights are defined

Making the previous substitution, and with a bit of messy algebra, the smooth error relation can be "solved" for e_i to yield the interpolation formula:

$$e_i \approx \sum_{j \in C_i} \omega_{ij} e_j$$

where the prolongation weights are given:

$$\omega_{ij} = -\frac{a_{ij} + \sum_{j \in D_i^s} \frac{a_{ik} a_{kj}}{\sum_{m \in C_i} a_{km}}}{a_{ii} + \sum_{n \in D_i^w} a_{in}}$$

Highlights of Multigrid: Storage: $f^h_{l,u}h$ must be stored each level

In 1-d, each coarse grid has about half the number of points as the finer grid.

In 2-d, each coarse grid has about onefourth the number of points as the finer grid.

In d-dimensions, each coarse grid has about 2^{-d} the number of points as the finer grid.

• Storage cost: $2N^d (1+2^{-d}+2^{-2d}+2^{-3d}+\cdots+2^{-Md}) < \frac{2N^d}{1-2^{-d}}$

less than 2, 4/3, 8/7 the cost of storage on the fine grid for 1, 2, and 3-d problems, respectively.

AMG storage: grid complexity

- For AMG there is no simple predictor for total storage costs. u^m , f^m , and $A^m = I_{m-1}^m A^{m-1} I_m^{m-1}$ must be stored on all levels.
- Define σ^{Ω} , the grid complexity, as the total number of unknowns (gridpoints) on all levels, divided by the number of unknowns on the finest level. Total storage of the vectors u and f occupy $2\sigma^{\Omega}$ storage locations.

AMG storage: operator complexity

• Define σ^A , the operator complexity, as the total number of nonzero coefficients of all operators A^m divided by the number of nonzero coefficients in the fine-level operator A^0 . Total storage of the operators occupies σ^A storage locations.

AMG storage: interpolation

- We could define σ^I , an interpolation complexity, as the total number of nonzero coefficients of all operators I_m^{m+1} divided by the number of nonzero coefficients in the operator I_0 . This measure is not generally cited, however (like most multigridders, the AMG crowd tends to ignore the cost of intergrid transfers).
- Two measures that occasionally appear are κ^A , the average "stencil size," and κ^I , the average number of interpolation points per F-point.

AMG Setup Costs: flops

- Flops in the setup phase are only a small portion of the work, which includes sorting, maintaining linked-lists, keeping counters, storage manipulation, and garbage collection.
- Estimates of the total flop count to define interpolation weights (ω^I) and the coarse-grid operators (ω^A) are:

$$\omega^{A} = N \kappa^{I} (2\kappa^{I} (\kappa^{A} - \kappa^{I}) + 3\kappa^{I} + \kappa^{A})$$
and
$$\omega^{I} = N \kappa^{I} (3(\kappa^{A} - \kappa^{I}) - 2)$$

AMG setup costs: a bad rap

 Many geometric MG methods need to compute prolongation and coarse-grid operators

 The only additional expense in the AMG setup phase is the coarse grid selection algorithm

 AMG setup phase is only 10-25% more expensive than in geometric MG and may be considerably less than that!

Highlights of Multigrid: Computation Costs

- Let 1 Work Unit (WU) be the cost of one relaxation sweep on the fine-grid.
- Ignore the cost of restriction and interpolation (typically about 20% of the total cost). (See?)
- Consider a V-cycle with 1 pre-Coarse-Grid correction relaxation sweep and 1 post-Coarse-Grid correction relaxation sweep.
- Cost of V-cycle (in WU):

$$2(1+2^{-d}+2^{-2d}+2^{-3d}+\cdots+2^{-Md}) < \frac{2}{1-2^{-d}}$$

Cost is about 4, 8/3, 16/7 WU per V-cycle in 1, 2, and 3 dimensions.

AMG Solve Costs: flops per cycle

 The approximate number of flops in on level m for one relaxation sweep, residual transfer, and interpolation are (respectively)

$$2N_m^A + 2\kappa^I N_m^F \qquad N_m^C + 2\kappa^I N_m^F$$

where N_m^A is the number of coefficients in A^m and N_m^C , N_m^F are the numbers of C-, F-points on Ω^m .

• The total flop count for a (v_1, v_2) V-cycle, noting that $\sum N_m^F \approx N$ and letting $v = v_1 + v_2$ is approximately

$$N(2(\nu+1) \kappa^A \sigma^{\Omega} + 4\kappa^I + \sigma^{\Omega} - 1)$$

AMG Solve Costs: flops per cycle, again

- All that is very well, but in practice we find the solve phase is generally dominated by the cost of relaxation and computing the residual.
- Both of those operations are proportional to the number of nonzero entries in the operator matrix on any given level.
- Thus the best measure of the ratio of work done on all levels to the work done on the finest level is operator complexity:

CASC

Highlights of Multigrid: difficultiesanisotropic operators and grids

- Consider the operator : $-\alpha \frac{\partial^2 u}{\partial x^2} \beta \frac{\partial^2 u}{\partial y^2} = f(x, y)$
- If $\alpha \times \beta$ then the GS-smoothing factors in the x- and y-directions are shown at right.

Note that GS relaxation does not damp oscillatory components in the *x*-direction.

 The same phenomenon occurs for grids with much larger spacing in one direction than the other:

Highlights of Multigrid: difficultiesdiscontinuous or anisotropic coefficients

• Consider the operator: $-\nabla \bullet (D(x,y)\nabla u)$, where

$$D(x,y) = \begin{pmatrix} d_{11}(x,y) & d_{12}(x,y) \\ d_{21}(x,y) & d_{22}(x,y) \end{pmatrix}$$

- Again, GS-smoothing factors in the x- and ydirections can be highly variable, and very often, GS relaxation does not damp oscillatory components in the one or both directions.
- Solutions: line-relaxation (where whole gridlines of values are found simultaneously), and/or semicoarsening (coarsening only in the strongly coupled direction).

AMG does semi-coarsening automatically!

Consider the operator :

$$-\alpha \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

$$\begin{pmatrix} -1 & -4 & -1 \\ 2 & 8 & 2 \\ -1 & -4 & -1 \end{pmatrix}$$

AMG
 automatically
 produces a
 semi-coarsened
 grid!!

AMG Convergence: there is theory (some)

- There is some theory, although it is of limited utility. It generally looks like:
- Theorem
 - Let $A^m \equiv A$ be SPD, and let the interpolation operator I_{m+1}^m be full rank, and let restriction and coarse-grid operators be defined by

$$I_m^{m+1} = (I_{m+1}^m)^T$$
 and $A^{m+1} = I_m^{m+1} A^m I_{m+1}^m$

and let there be smoothing operators G^m and coarse-grid correction operators

$$T^{m} = I^{m} - I_{m+1}^{m} (A^{m+1})^{-1} I_{m}^{m+1} A^{m}$$

AMG Convergence: there is theory (some)

- Theorem (continued)
 - suppose that, for all e^m , $\|G^m e^m\|_A^2 \leq \|e^m\|_A^2 \delta \|T^m e^m\|_A^2$ holds for some $\delta > 0$ independently for all e^m and m.

Then $\delta \leq 1$, and, provided the coarsest problem is solved and at least one smoothing step is performed after each coarse-grid correction step, the V-cycle has a convergence factor wrt the energy norm bounded above by

$$\sqrt{1-\delta}$$
.

How's it perform (vol I)?

Regular grids, plain, old, vanilla problems

The Laplace Operator:

	Convergence		Time	Setup
Stencil	per cycle	Complexity	per Cycle	Times
5-pt	0.054	2.21	0.29	1.63
5-pt skew	0.067	2.12	0.27	1.52
9-pt (-1,8)	0.078	1.30	0.26	1.83
9-pt (-1,-4,20)	0.109	1.30	0.26	1.83

• Anisotropic Laplacian: $-\epsilon U_{xx} - U_{yy}$

Epsilon	0.001	0.01	0.1	0.5	1	2	10	100	1000
Convergence/cycle	0.084	0.093	0.058	0.069	0.056	0.079	0.087	0.093	0.083

How's it perform (vol II)?

Structured Meshes, Rectangular Domains

5-point Laplacian on regular rectangular grids

Convergence factor (y-axis) plotted against number of nodes (x-axis)

How's it perform (vol III)?

Unstructured Meshes, Rectangular Domains

Laplacian on random unstructured grids (regular)

triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)

How's it perform (vol IV)?

Isotropic diffusion, Structured/Unstructured Grids

$\nabla \bullet (d(x,y) \nabla u)$ on structured, unstructured grids

Structured Structured Unstruct. Unstruct. Problems used: "a" means parameter c=10, "b" means c=1000

6:
$$d(x,y) = 1.0 + c |x-y|$$
 8: $d(x,y) = \begin{cases} 1.0 & 0.125 \le \max\{|x-0.5|, |y-0.5|\} \le 0.25 \\ c & \text{otherwise} \end{cases}$

7:
$$d(x,y) = \begin{cases} 1.0 & x \le 0.5 \\ c & x > 0.5 \end{cases}$$
 9: $d(x,y) = \begin{cases} 1.0 & 0.125 \le \sqrt{(x-0.5)^2 + (y-0.5)^2} \le 0.25 \\ c & \text{otherwise} \end{cases}$

How's it perform (vol IVa)?

Isotropic diffusion, Structured/Unstructured Grids

$\nabla \bullet (d(x,y) \nabla u)$ on structured, unstructured grids

Problem used: "a" means parameter c=10, "b" means c=1000

"Checkerboard" of coefficients 1.0 and *c*, squares sized 1/n:

$$d(x,y) = \begin{cases} 1.0 & \frac{i}{n} \le x < \frac{i+1}{n}, \frac{j}{n} \le y < \frac{j+1}{n}, & i+j \text{ even} \\ c & \frac{i}{n} \le x < \frac{i+1}{n}, \frac{j}{n} \le y < \frac{j+1}{n}, & i+j \text{ odd} \end{cases}$$

How's it perform (vol V)?

Laplacian operator, unstructured Grids

So, what could go wrong?

Strong F-F connections: weights are dependent on each other

- For point i the value e_j is interpolated from k_1 , k_2 , and is needed to make the interpolation weights for approximating e_i .
- For point j the value e_i is interpolated from k_1, k_2 , and is needed to make the interpolation weights for approximating e_i .

It's an implicit system!

CASC

Is there a fix?

 A Gauss-Seidel like iterative approach to weight definition is implemented. Usually two passes suffice. But does it work?

 Frequently, it does: Convergence factors for Laplacian, stretched quadrilaterals

	theta	Standard	Iterative
$\Delta x = 10 \Delta y$	0.25	0.47	0.14
$\Delta \lambda - 10 \Delta y$	0.5	0.24	0.14
$\Delta x = 100 \Delta y$	0.25	0.83	0.82
	0.5	0.53	0.23

Another Fix: indirect interpolation (see Stueben's text for detail)

• The 5-point problem cannot give "full" coarsening because the F-point in the middle has no connection to any of the 4 C-points. Hence, there is no way to interpolate its value.

Another Fix: indirect interpolation (see Stueben's text for detail)

- Full coarsening could be achieved by indirect interpolation.
- First interpolate the F-points from the C-points.

Another Fix: indirect interpolation (see Stueben's text for detail)

- Full coarsening could be achieved by indirect interpolation.
- First interpolate the F-points from the C-points.
- Then interpolate the "middle" from the F-points.

 Similar treatment could be applied whenever F-F dependencies arise.

AMG for systems

How can we do AMG on systems?

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

 Naïve approach: "Block" approach (block Gauss-Seidel, using scalar AMG to "solve" at each cycle)

$$u \leftarrow (A_{11})^{-1} (f - A_{12}v)$$
$$v \leftarrow (A_{22})^{-1} (g - A_{21}u)$$

 Great Idea! Except that it doesn't work! (relaxation does not evenly smooth errors in both unknowns)

AMG for systems: a solution

 To solve the system problem, allow interaction between the unknowns at all levels:

$$A^{k} = \begin{pmatrix} A_{11}^{k} & A_{12}^{k} \\ A_{21}^{k} & A_{22}^{k} \end{pmatrix} \quad \text{and} \quad I_{k+1}^{k} = \begin{pmatrix} (I_{k+1}^{k})_{u} & 0 \\ 0 & (I_{k+1}^{k})_{v} \end{pmatrix}$$

- This is called the "unknown" approach.
- Results: 2-D elasticity, uniform quadrilateral mesh:

mesh spacing	0.125	0.0625	0.03135	0.015625
Convergence factor	0.22	0.35	0.42	0.44

So, what else can go wrong? Ouch! Thin body elasticity!

Elasticity, 3-d, thin bodies!

$$u_{xx} + \frac{1-v}{2}(u_{yy} + u_{zz}) + \frac{1+v}{2}(v_{xy} + w_{xz}) = f_1$$

$$v_{yy} + \frac{1-v}{2}(v_{xx} + v_{zz}) + \frac{1+v}{2}(u_{xy} + w_{yz}) = f_2$$

$$w_{zz} + \frac{1-v}{2}(w_{xx} + w_{yy}) + \frac{1+v}{2}(u_{xz} + v_{yz}) = f_3$$

 Slide surfaces, Lagrange multipliers, force balance constraints:

$$\begin{pmatrix} S & T \\ U & V \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$

• S is "generally" positive definite, V can be zero, $U^T \neq T$.

Wanted:

Good solution method for this problem.

REWARD

Needed: more robust methods for characterizing smooth error

 Consider quadrilateral finite elements on a stretched 2D Cartesian grid (dx -> infinity):

$$A = \begin{bmatrix} -1 & -4 & -1 \\ 2 & 8 & 2 \\ -1 & -4 & -1 \end{bmatrix}$$

- Direction of dependence is not apparent here
- Iterative weight interpolation will sometimes compensate for mis-identified dependence
- Elasticity problems are still problematic

Scalability is central for large-scale parallel computing

- A code is scalable if it can effectively use additional computational resources to solve larger problems
- Many specific factors contribute to scalability:
 - architecture of the parallel computer
 - parallel implementation of the algorithms
 - convergence rates of iterative linear solvers

Linear solver convergence can be discussed independent of parallel computing, and is often overlooked as a key scalability issue.

In Conclusion, AMG Rules!

- Interest in AMG methods is high, and probably still rising, because of the increasing importance of terra-scale simulations on unstructured grids.
- AMG has been shown to be a robust, efficient solver on a wide variety of problems of real-world interest.
- Much research is underway to find effective ways of parallelizing AMG, which is essential to largescale computing.

Acknowledgment

 This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract number:

W-7405-Eng-48.

Document Release number UCRL-MI -133749